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ABSTRACT
Sequential recommendation aims at mining time-aware user inter-
ests through modeling sequential behaviors. Transformer, as an
effective architecture designed to process sequential input data,
has shown its superiority in capturing sequential relations for rec-
ommendation. Nevertheless, existing Transformer architectures
lack explicit regularization for layer-wise disentanglement, which
fails to take advantage of disentangled representation in recom-
mendation and leads to suboptimal performance. In this paper, we
study the problem of layer-wise disentanglement for Transformer
architectures and propose the Adaptive Disentangled Transformer
(ADT) framework, which is able to adaptively determine the opti-
mal degree of disentanglement of attention heads within different
layers. Concretely, we propose to encourage disentanglement by
requiring the independence constraint via mutual information es-
timation over attention heads and employing auxiliary objectives
to prevent the information from collapsing into useless noise. We
further propose a progressive scheduler to adaptively adjust the
weights controlling the degree of disentanglement via an evolution-
ary process. Extensive experiments on various real-world datasets
demonstrate the effectiveness of our proposed ADT framework.
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1 INTRODUCTION
Sequential recommender systems, which aim to accurately recom-
mend the next item to a target user throughmodeling the sequential
patterns of user interests, play an important role in facilitating our
online experiences [23, 28, 48]. The major task is to find an ap-
propriate way to represent the sequential user behaviors such as
click, rate, favorite, etc. Transformer [50], as one of the most widely
adopted architectures, has shown its power in representing sequen-
tial input data, thus capable of capturing dynamic relations for
sequential recommendation [48].

On the one hand, users nowadays have diverse and constantly-
changing interests in terms of various aspects in the course of time,
thus accurately capturing the information regarding these aspects
can help to boost the recommendation performance significantly.
On the other hand, obtaining the information capturing various
aspects is treated as one major advantage of disentangled represen-
tation learning, which is known to be very important for accurately
making recommendations [54]. However, it is reported that existing
Transformer architectures fail to guarantee the assumption that
the widely adopted multi-head attention within different layers can
capture the disentangled information related to different aspects
of sequence data [10, 35, 45], and lack of explicit regularization for
layer-wise disentanglement, which may not take the advantage of
disentangled representation in recommendation and may lead to
suboptimal performance.

To deal with the issue, in this paper, we investigate the discovery
of the optimal degree of disentanglement for Transformer archi-
tectures that best serve sequential recommendation, where the
attention heads in different layers of the Transformer are disentan-
gled to capture various aspects of user behaviors in an adaptive
manner. Nevertheless, learning to discover such a disentangled
Transformer architecture adaptively for a given recommendation
dataset is largely unexplored in the literature, posing the following
two challenges:

(1) Transformer architectures or backbones may have different
numbers of layers with different numbers of attention heads
designed with various functions. Therefore, it is challenging
to determine which part of the encoder and decoder layer
in the backbone should be disentangled, and how we can
encourage the disentanglement of attention heads to cap-
ture various aspects of user interests given a Transformer
architecture.
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(2) Different datasets may indicate different recommendation
tasks imposing user interests with various aspects, and the
capabilities of disentanglement differ among different lay-
ers, which requires an adequate Transformer architecture
to adaptively adjust the degree of disentanglement given a
recommendation task. Thus, it remains another challenge to
adaptively discover the optimal degree of disentanglement
for attention heads in different layers to achieve the best
recommendation performance on various datasets.

To tackle these challenges, we propose theAdaptiveDisentangled
Transformer (ADT) framework, which simultaneously i) disentan-
gles attention heads within different layers of a given Transformer
architecture, and ii) determines the optimal degree of disentangle-
ment for attention heads in different layers adaptively in order
to achieve the best recommendation performance. Particularly, to
disentangle the attention heads, our ADT framework requires the
independence constraint via mutual information estimation over
attention heads, utilizing an auxiliary classification objective with
generated pseudo labels to encourage the disentanglement. To fur-
ther prevent the learned disentangled information from collapsing
into noisy signals, the proposed ADT framework employs another
auxiliary objective with a decoder to reconstruct the input data.
Moreover, we propose a progressive scheduler which is able to adap-
tively adjust the auxiliary weights controlling the degree of disen-
tanglement of different layers via an evolutionary process. We also
design a supernet to accelerate the searching progress for discover-
ing the optimal weights for different auxiliary objectives. Extensive
experiments including ablation studies are conducted to demon-
strate that our proposed ADT framework can be applied to different
Transformer architectures to significantly outperform state-of-the-
art baselines, and verify that it is necessary for Transformer archi-
tectures to possess different degrees of disentanglement in different
layers that can best serve the task of sequential recommendation.
The code is available at https://github.com/defineZYP/ADT. Our
main contributions are summarized as follows:

• We point out the importance of disentangling attention and
investigate adaptive disentanglement of attention heads in
Transformer architectures for the sequential recommenda-
tion, to the best of our knowledge, for the first time.

• We propose the Adaptive Disentangled Transformer (ADT)
framework capable of simultaneously disentangling atten-
tion heads in a given Transformer, as well as determining the
optimal degree of disentanglement for attention heads in dif-
ferent layers adaptively such that the best recommendation
performance can be achieved.

• We conduct extensive experiments over various real-world
datasets to show that the proposed ADT framework can
be applied to different Transformer architectures to signifi-
cantly outperform state-of-the-art baselines. Ablation studies
also verify that Transformer may need different degrees of
disentanglement for attention heads within different layers
to best serve sequential recommendation.

2 RELATEDWORK
In this section, we review related works on sequential recommenda-
tion, attention mechanism, as well as disentangled representation

learning. We also briefly discuss relevant works on neural archi-
tecture search, which has close relations with the evolutionary
procedure in the progress scheduler of our proposed ADT frame-
work.
Sequential Recommendation. The purpose of the sequential rec-
ommendation is to use historical data from user interactions to
predict the next item. Early work on sequential recommendation
tasks is generally based on Markov chains. FPMC [44] combines
Markov chains and matrix factorization. It generates a transition
matrix for each user, allowing the model to capture both temporal
information and long-term user preference information. However,
FPMC only makes use of the first-order Markov chains. Fossil [19]
extends this idea to high-order Markov chains to consider more
items. However, as MCs based methods fail to model union-level
sequential patterns and fail to allow skip behaviors, Caser [49]
introduces convolutional neural networks into the sequential rec-
ommendation. Caser considers the embedding matrix of items as an
image and learned transitions by using convolution operations. As
better models [9, 25, 50] are applied to sequence data, some works
adopt them such as RNNs [11, 22, 23, 30, 33, 37, 39] and Transform-
ers [14, 28, 48] to model user behavior sequences. GRU4Rec [23]
first applies Gated Recurrent Units to sequence recommendation.
And unlike Markov chain and RNN-based methods, the multi-head
self-attention mechanism is able to capture information on differ-
ent aspects from all item-item pairs in the sequence. SASRec [28]
and Bert4Rec [48] have achieved great success with the sequential
recommendation.
Attention Mechanism and Transformer. Attention mechanism
has shown amazing potential for many tasks, e.g., visual recogni-
tion [12, 57], image generation [36, 40], machine translation [50,
52] hyper-parameter optimization [56] and neural architecture
search [16, 62]. The attention mechanism draws on the human
attentional mindset, with the core goal of selecting the information
that is more critical to the current task from among the many. And
the multi-head attention mechanism allows the model to capture
information from different representation sub-spaces at different
positions. Several studies [3, 10, 27, 35, 45, 51, 60] have analyzed
attention mechanism. Both [51] and [35] find that in the multi-
head attention mechanism, there is redundancy in the heads. Bian
et al. [3] find that there is a high similarity of attention patterns
between different heads in vanilla Transformer and prune some
attention heads but get a similar performance. Clark et al. [10]
calculate the Jensen-Shannon divergence between attention distri-
butions of different heads. And the result indicates that show that
at the shallow layers, the distribution of representations learned
by different attention heads differs widely, which means that it is
indeed able to capture information on different aspects. However,
as the layer becomes deeper, the distributions of representations
learned by different attention heads gradually become consistent.
These studies suggest that the mechanism of multi-head attention
may contradict the original expectations.
Disentangled Representation Learning. Disentangled repre-
sentation learning aims to learn different aspects of the data, cap-
turing the interpretable representation behind different latent fac-
tors [2, 53]. Variational autoencoder (VAE) [29] is one of the rep-
resentative works of disentangled representation learning which
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captures the information of different latent factors by variational
inference and an encoder-decoder based architecture. 𝛽−VAE[24]
balances the representational ability and the disentanglement abil-
ity of the model based on VAE. Due to the diversity of purchase
interests of users, multi-interests methods [5, 8] and disentangled
representation learning have also been applied to recommendation
tasks [34, 54, 55, 58, 61] with great success. However, to the best of
our knowledge, there is still a lack of research to explicitly intro-
duce layer-wise disentangled representation into the Transformer
to adaptively make sequential recommendations.
Neural Architecture Search. Neural architecture search (NAS) is
a method to automatically search for neural network architectures
without excessive expert knowledge. Existing NAS methods con-
sist of three main components: search space, search strategy, and
evaluation method. Depending on the search strategy, NAS can be
divided into three categories, reinforcement learning based meth-
ods [1, 15, 63, 64], evolutionary algorithm based methods [41, 46]
and gradient based methods [7, 31]. However, many of these meth-
ods require a large amount of time to search for excellent architec-
ture. For this reason, ENAS [38] proposes a method called supernet
to share parameters between the same options in the search space
to accelerate the search process. However, parameter sharing leads
to the coupling between different candidate architectures, making
the NAS method unable to accurately evaluate the performance
of these architectures and thus affect the search result. One-shot
method [4, 17] is therefore proposed, which decouples the search
process into the training stage and search stage to alleviate the
problems.

3 METHODOLOGY
In this section, we present the proposed Adaptive Disentangled
Transformer. We first give the problem formulation and introduce
the general approach to using Transformer for sequential recom-
mendation in the preliminaries. Then, we give a brief overview of
the main parts of our method and describe the auxiliary objectives
in detail in section 3.2. And we detail our adaptive training strategy
in section 3.3.

3.1 Preliminaries
In sequential recommendation, we have the user setU = {𝑢1, 𝑢2, ...,
𝑢 |U | }, the item set V = {𝑣1, 𝑣2, ..., 𝑣 |V | }, and the interactions be-
tween the users and items. For each user 𝑢 ∈ U, we can organize
behaviors of that user into a sequence in chronological order as
𝑆𝑢 = [𝑣𝑢1 , 𝑣

𝑢
2 , . . . , 𝑣

𝑢
𝑇
], where 𝑣𝑢𝑡 ∈ V is the item that the user 𝑢

clicked at time step 𝑡 and𝑇 is the maximum length of the sequence.
The purpose of sequential recommendation is to infer the item that
the user will most likely interact with at time step 𝑇 + 1 based on
the past 𝑇 historical items in the sequence. Next, we will intro-
duce a general approach to the use of Transformer for sequential
recommendation.

First, for each item 𝑣𝑢𝑡 ∈ 𝑆𝑢 , we need to embed them from the
index into the representation space. Transformer has an item em-
bedding matrix Z ∈ R |V |×𝑑 , where each item can be represented as
a 𝑑 dimensional vector 𝑧𝑢𝑡 . Then to model the position information
of the sequence, Transformer usually has a positional embedding
matrix P ∈ R𝑇×𝑑 that maps the item at time step 𝑡 in the sequence

to 𝑝𝑡 . To represent both item attributes and the temporal informa-
tion, a function 𝑓 (·) is used to fuse the item embedding and the
position embedding as follows,

ℎ𝑢𝑡 = 𝑓 (𝑧𝑢𝑡 , 𝑝𝑡 ), 𝑡 = 1, 2, ...,𝑇 , (1)

and then the item sequence of the user 𝑢 is represented as a hid-
den representation ℎ0 = [ℎ𝑢1 , ℎ

𝑢
2 , ..., ℎ

𝑢
𝑇
]. The form of 𝑓 (·) is not

consistent for different Transformers. The easiest way is to add
the two embeddings or concatenate the embeddings and then put
them into the following modules. Also, there are other methods
during the embedding process. For a unified description, we set
ℎ0 = Embed(𝑆𝑢 ) ∈ R𝑇×𝑑 .

For sequential recommendation, the Transformer can be seen as
a stack of 𝐿 Transformer encoder layer. And for the 𝑙-th encoder
layer, the representation ℎ𝑙−1 will first be input into the attention
module. The most commonly used multi-head attention mechanism
can be represented as:

Attn𝑗 (ℎ𝑙−1) = Attention𝑗 (Q𝑙
𝑗 ,K

𝑙
𝑗 ,V

𝑙
𝑗 ) = softmax(

Q𝑙
𝑗
K𝑙
𝑗

𝑇

√
𝑑

)V𝑙𝑗 ,

(2)

Q𝑙
𝑗 = ℎ𝑙−1𝑊 𝑙

𝑞 𝑗 , K
𝑙
𝑗 = ℎ𝑙−1𝑊 𝑙

𝑘 𝑗
, V𝑙𝑗 = ℎ𝑙−1𝑊 𝑙

𝑣 𝑗 , 𝑗 = 1, 2, · · · , 𝑛
(3)

where𝑊 𝑙
𝑞 𝑗
,𝑊 𝑙

𝑘 𝑗
,𝑊 𝑙

𝑣 𝑗
∈ R𝑑×Δ𝑑 are the matrices for queries, keys,

and values in the attention module of the 𝑗-th head of the 𝑙-th en-
coder layer,𝑑 = Δ𝑑×𝑛 and𝑛 is the number of heads. The representa-
tions captured by different heads, [𝐴𝑡𝑡𝑛(ℎ𝑙−1)1, · · · , 𝐴𝑡𝑡𝑛(ℎ𝑙−1)𝑛],
represent different aspects of the purchase intentions of that user,
which to some extent can be regarded as a kind of disentangled
information. And after that, we concatenate the output of all heads
as Attn(ℎ𝑙−1) = [Attn𝑗 (ℎ𝑙−1)]𝑛𝑗=1.

And for computational stability and to accelerate convergence,
the skip connection and the LayerNormalization(LN) are used as

ℎ𝑙𝑡𝑚𝑝 = ℎ𝑙−1 + Attn(LN((ℎ𝑙−1)). (4)

After the attention module, a feedforward network is introduced
to model the nonlinear relations as

ℎ𝑙 = ℎ𝑙𝑡𝑚𝑝 + FFN(LN(ℎ𝑙𝑡𝑚𝑝 )) . (5)

And after 𝐿 encoder layers, we get ℎ𝐿 which contains the pur-
chase preference information of user 𝑢. A classic way to use this
information to make predictions is to use the matrix factorization as
𝑟 = ℎ𝐿

𝑇
Z𝑇 with negative sampling and the binary cross-entropy loss,

whereℎ𝐿
𝑇
is the last embedding in the embedding sequenceℎ𝐿 , 𝑟 is a

matrix about the relevance of the user𝑢 and the items. A high score
means a high possibility that the user may interact with. However,
for different Transformer backbone, the prediction method and the
training objective is different, and we denote L𝑡𝑎𝑠𝑘 as the original
objective of the selected Transformer backbone. Using L𝑡𝑎𝑠𝑘 to
train the whole Transformer backbone until convergence will result
in the final Transformer-based recommender model.

Note that in the traditional Transformer-based recommender
models, the representations learned from different heads, [𝐴𝑡𝑡𝑛(ℎ𝑙−1)1,
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𝐴𝑡𝑡𝑛(ℎ𝑙−1)2, · · · , 𝐴𝑡𝑡𝑛(ℎ𝑙−1)𝑛], which are expected to capture dif-
ferent aspects of the user’s preferences, sharing the similar ideawith
disentanglement. However, they may fail to achieve disentangle-
ment without explicit regularization. Additionally, since previous
works [10, 35, 45] indicate that the disentanglement characteristic
of Transformer is layer-specific, i.e., only shallow layers need dis-
entangled representation while the deep layers need task-specific
representation. Additionally, the layers that need to be disentangled
may vary with the tasks and datasets. Deciding in which layer we
should add the disentangled regularization and how to discover the
optimal degree of disentanglement is another challenging problem.
To solve these two problems, we present our proposed Adaptive
Disentangled Transformer in the next subsection.

3.2 Adaptive Disentangled Transformer
The overall framework of our Adaptive Disentangled Transformer
is shown in Figure 1. To encourage the disentanglement of the
attention heads in different layers, we proposed two auxiliary ob-
jectives which control the ability to disentangle the intentions and
the capability to capture the user’s comprehensive diverse interests,
respectively. To discover the optimal layer-wise disentanglement,
we design an adaptive training strategy for Transformer to auto-
matically adjust the weights of these two auxiliary objectives based
on the backbone architecture and the dataset. Next, we respectively
describe the two auxiliary objectives and the adaptive training
strategy.

Objective 1: The Independence Auxiliary Objective.
We apply this objective to the encoder to guarantee the indepen-

dence between different heads and thus make the representation
more disentangled. The structure of the Transformer-based encoder
is consistent with the backbone. They usually have at least one em-
bedding module and an attention module shown in section 3.1. In
our method, the behavior of the encoder is the same as the backbone
Transformer and the general process is shown in Eqs. (1) to (5).

To distinguish the representations of each head, we reshape
Attn(ℎ𝑙−1) to 𝐴𝑙 = [𝑎𝑙1,1, 𝑎

𝑙
1,2, ..., 𝑎

𝑙
𝑡,𝑘

, ..., 𝑎𝑙
𝑇 ,𝑛

] ∈ R𝑛·𝑇×Δ𝑑 , where
𝑎𝑙
𝑡,𝑘

∈ RΔ𝑑 is the hidden representation of head 𝑘 and at the time
step 𝑡 .

We expect each head to capture different latent factors of the
user’s purchase intentions, and they are independent of each other.
However, since there is no label of intention in the training data,
we do not know exactly which kind of information is captured by
each head. To solve the problem, we can enhance the relationship
between the latent factor 𝑘 and the learned embedding 𝑎𝑙

𝑡,𝑘
by

maximizing the mutual information between them. Although we
do not know the exact meaning of latent factors, each latent factor is
independent of the other. Therefore if the representation learned by
each head 𝑘 can be made to depend on a latent factor 𝑘 , it is possible
to make the representation learned by different heads independent.

According to [26, 59], the maximization of mutual information
can be converted into the following form. Given that the represen-
tation 𝑎𝑙

𝑡,𝑘
is expected to belong to latent factor 𝑘 , the regularizer

𝑃𝑙 (𝑘 |𝑎𝑙
𝑡,𝑘

) estimates the probability that 𝑎𝑙
𝑡,𝑘

belongs to the 𝑘-th

latent factor as

𝑃𝑙 (𝑘 |𝑎𝑙
𝑡,𝑘

) = softmax(W𝑙𝑎𝑙
𝑡,𝑘

+ 𝑏𝑙 ), (6)

where W𝑙 ∈ R𝑛×Δ𝑑 . For all 𝑎𝑙
𝑡,𝑘

∈ 𝐴𝑙 , we calculate 𝑃𝑙 (𝑘 |𝑎𝑙
𝑡,𝑘

) and
obtain a vector 𝑃𝑙 (𝐴𝑙 ). And thus we can use a classification task
to optimize this regularizer. First, we generate an auxiliary label
𝑦 ∈ {1, 2, ..., 𝑛} for every representation learned by different heads
according to the position of the head, i.e., for the representation
output by the 𝑖-th head, we give the auxiliary label 𝑦 = 𝑖 . And we
get an auxiliary label vector 𝑌 𝑙

𝑓
= {𝑦1,1, 𝑦1,2, ..., 𝑦𝑛,𝑇 } where each

𝑦𝑖,𝑡 = 𝑖 means the auxiliary label of head 𝑖 at the time step 𝑡 . This
regularization is an approximation of mutual information and when
the loss of the auxiliary objective becomes small, the representation
learned by different heads would be more independent. And the
auxiliary objective of the 𝑙-th layer can be formulated as:

L𝑙
𝑖𝑛𝑑

= CrossEntropy(𝑃𝑙 (𝐴𝑙 ), 𝑌 𝑙
𝑓
). (7)

Objective 2: The Reconstruction Auxiliary Objective.
After disentangling the representation of different heads of the

Transformer, we need to ensure that the disentangled representa-
tions learned by the different heads are meaningful and contain the
user’s comprehensive and diverse interests. Inspired by VAE[29],
which makes the representation contain rich input information
through reconstructing the input data, we introduce the reconstruc-
tion objective.

To achieve this, a decoder is used to decode the learned rep-
resentation. A decoder, as opposed to an encoder, is a process of
converting a representation to a specific sequence. Thus, each of
its layers corresponds to the layer of the encoder. We reconstruct
the input of layer 𝑙 of encoder ℎ𝑙−1 and the output of layer 𝐿 − 𝑙 + 1
of decoder ℎ𝐿−𝑙+1

𝑑𝑒𝑐
, to guarantee the representations learned by the

𝑙-th layer of encoder still contain rich information.
The structure of the decoder is similar to [50] and consists of two

attention modules and shares the embedding module with the en-
coder so the input of the first layer of the decoder can be embedded
as ℎ0

𝑑𝑒𝑐
= Embed(𝑆𝑢

𝑑𝑒𝑐
), where 𝑆𝑢

𝑑𝑒𝑐
is the input sequence of the de-

coder. For 𝑆𝑢
𝑑𝑒𝑐

, since the decoder is originally used for generation
tasks, its final output contains the information of the sequence 𝑆𝑢

𝑑𝑒𝑐
and the information of the item at the next time step. Considering
the need for reconstruction, we want the information output by the
decoder at the last layer to be similar to the information obtained
by the encoder at the first layer. Therefore we take out the first
𝑇 − 1 time steps of the input sequence of the encoder as 𝑆𝑢

𝑑𝑒𝑐
and

pad it to length 𝑇 . The token we use for padding is related to the
backbone Transformer. For example, in the SASRec backbone, we
use token 0 for padding since there is no special need for it. But in
the Bert4Rec backbone, we use the token [MASK] for padding since
Bert4Rec treats sequential recommendation as a Cloze objective
problem and uses the token [MASK] to replace the item that needs
to be predicted.

To adapt to the encoder of the selected backbone, the decoder
attention modules have the same structure as the encoder. The first
attention module computes the self-attention of the input of the
decoder as:

ℎ𝑙𝑡𝑚𝑝 = ℎ𝑙−1
𝑑𝑒𝑐

+ Attn(LN(ℎ𝑙−1
𝑑𝑒𝑐

)), (8)
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Figure 1: Existing Backbone Transformer V.S. The Proposed Adaptive Disentangled Transformer Framework. (a) An existing
backbone Transformer for sequential recommendation. (b) Our proposed Adaptive Disentangled Transformer with the same encoder as
the backbone Transformer, which consists of four key parts. 1. Transformer-based encoder: to encode the sequence of items, where the
multi-head attention mechanism captures the information of different aspects of the items in the behavior sequence. In this module, we
add the first auxiliary independence objective L𝑙

𝑖𝑛𝑑
of each layer 𝑙 to enhance the independence of the learned representations between

different heads. 2. Transformer-based decoder: to decode the learned representation, and in this module, we add another reconstruction
auxiliary objective L𝑙

𝑟𝑒𝑐 of each layer 𝑙 to make the disentangled representation contain rich information about the input sequence, so that
we can capture the user’s comprehensive and diverse interests. 3. Downstream recommendation task processing module: which is utilized to
conduct the final prediction. 4. Weight scheduler: the core component of the adaptive training strategy, for adaptively adjusting the weights
of the auxiliary objectives according to different datasets and backbones.

where ℎ𝑙−1
𝑑𝑒𝑐

is the input of the 𝑙-th layer of decoder.
And the second attention module computes the attention be-

tween the output of the encoder and the decoder as:

ℎ𝑙𝑡𝑚𝑝 = LN(ℎ𝑙𝑡𝑚𝑝 ), (9)

ℎ𝑙𝑡𝑚𝑝 = ℎ𝑙𝑡𝑚𝑝 + Attention(ℎ𝑙𝑡𝑚𝑝𝑊
𝑙
𝑞2, ℎ

𝐿𝑊 𝑙
𝑘2, ℎ

𝐿𝑊 𝑙
𝑣2), (10)

ℎ𝑙+1
𝑑𝑒𝑐

= ℎ𝑙𝑡𝑚𝑝 + FFN(LN(ℎ𝑙𝑡𝑚𝑝 )), (11)

where𝑊 𝑙
𝑞2,𝑊

𝑙
𝑘2,𝑊

𝑙
𝑣2 ∈ R𝑑×𝑑 are the matrices of the second atten-

tion module, ℎ𝐿 is the output of encoder, and FFN is a feed-forward
network. And the auxiliary objective of the 𝑙-th layer can be for-
mulated as:

L𝑙
𝑟𝑒𝑐 = MSELoss(ℎ𝐿−𝑙+1

𝑑𝑒𝑐
, ℎ𝑙−1). (12)

This reconstruction auxiliary objective makes the learned dis-
entangled representation contains rich input information, i.e., the
user’s sequential behaviors which can reflect his or her compre-
hensive and diverse interests. Additionally, this regularization can
be regarded as an auxiliary task for recommendation, which can
improve the representation generalization ability [6][32], suitable
for the recommendation task where the data is often sparse.

TrainingObjective. With the two proposed auxiliary objectives,
our final training objective is as follows:

L = L𝑡𝑎𝑠𝑘 +
𝐿∑︁
𝑙=1

_𝑙
𝑖𝑛𝑑

L𝑙
𝑖𝑛𝑑

+
𝐿∑︁
𝑙=1

_𝑙𝑟𝑒𝑐L𝑙
𝑟𝑒𝑐 , (13)

where _𝑙
𝑖𝑛𝑑

and _𝑙𝑟𝑒𝑐 control how disentangled the representation
is and how much input information we want to keep in each layer.
Since there are totally 2𝐿 weight hyper-parameters that are hard to
decide, we propose the adaptive training strategy which automati-
cally obtains the optimal value of these parameters and trains the
whole Transformer model.

3.3 The Adaptive Training Strategy
We introduce the adaptive training strategy inspired by the neural
architecture search (NAS), which trains the model and simultane-
ously obtains the best weights of each layer. To further accelerate
convergence, we propose a supernet that shares the model parame-
ters and only updates part of the specific weights after each training
epoch.

For each auxiliary objective, we set the search space of its weight
to a continuous interval and divide it into𝑀 sub-intervals regarding
the order of magnitude to represent the importance of the auxiliary
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objective in a certain level as [_0, _1), [_1, _2), . . . , [_𝑀−1, _𝑀 ] . For
each sub-interval, we share the parameters in the supernet. And
as we have two auxiliary objectives, for each layer in the supernet,
there are 𝑀 × 𝑀 identical modules that cover the entire search
space like a grid.

To make it easier to search for auxiliary weights with different
ranges of values, we use a vector c = [𝑐1𝑟𝑒𝑐 , 𝑐1𝑖𝑛𝑑 , ..., 𝑐

𝐿
𝑟𝑒𝑐 , 𝑐

𝐿
𝑖𝑛𝑑

] to
represent the sampled sub-network candidate, where 𝑐𝑙𝑟𝑒𝑐 , 𝑐𝑙𝑖𝑛𝑑 ∈
[0, 1] denote the weight of the auxiliary weights of the 𝑙-th layer
and 𝐿 is the number of the layers. For 𝑐𝑙𝑟𝑒𝑐 ∈ [𝑚

𝑀
, 𝑚+1

𝑀
), where

𝑚 ∈ {0, 1, 2, ..., 𝑀 − 1}, we use linear interpolation method to find
its true auxiliary weight as:

𝑠𝑙𝑟𝑒𝑐 = (𝑐𝑙𝑟𝑒𝑐 −
𝑚

𝑀
) ·𝑀, (14)

_𝑙𝑟𝑒𝑐 = 𝑠𝑙𝑟𝑒𝑐 · _𝑚+1 + (1 − 𝑠𝑙𝑟𝑒𝑐 ) · _𝑚, (15)

and we do the same for 𝑐𝑙
𝑖𝑛𝑑

∈ [𝑚
𝑀
, 𝑚+1

𝑀
) to calculate the real

auxiliary weight as:

𝑠𝑙
𝑖𝑛𝑑

= (𝑐𝑙
𝑖𝑛𝑑

− 𝑚

𝑀
) ·𝑀, (16)

_𝑙
𝑖𝑛𝑑

= 𝑠𝑙
𝑖𝑛𝑑

· _𝑚+1 + (1 − 𝑠𝑙
𝑖𝑛𝑑

) · _𝑚, (17)

In the forward phase of the supernet, we use bi-linear interpola-
tion to find which modules of the grid to use for the computation.
We let ℎ𝑙

𝑖, 𝑗
represent the hidden representation of the output of the

module shared by the reconstruction auxiliary objective, whose
weight lies in the 𝑖-th interval, and the independence auxiliary ob-
jective whose weight lies in the 𝑗-th interval in the 𝑙-th layer. The
hidden representation of the 𝑙-th layer of the supernet ℎ𝑙𝑠𝑢𝑝𝑒𝑟 with
𝑐𝑙𝑟𝑒𝑐 ∈ [𝑚𝑟𝑒𝑐

𝑀
,
𝑚𝑟𝑒𝑐+1

𝑀
), 𝑐𝑙

𝑖𝑛𝑑
∈ [𝑚𝑖𝑛𝑑

𝑀
,
𝑚𝑖𝑛𝑑+1

𝑀
) can be formulated as

follows:

𝑠𝑙𝑟𝑒𝑐 = (𝑐𝑙𝑟𝑒𝑐 −
𝑚𝑟𝑒𝑐

𝑀
) ·𝑀, 𝑠𝑙𝑟𝑒𝑐

′
= 1 − 𝑠𝑙𝑟𝑒𝑐 , (18)

𝑠𝑙
𝑖𝑛𝑑

= (𝑐𝑙
𝑖𝑛𝑑

− 𝑚𝑖𝑛𝑑

𝑀
) ·𝑀, 𝑠𝑙

𝑖𝑛𝑑

′
= 1 − 𝑠𝑙

𝑖𝑛𝑑
, (19)

ℎ𝑙𝑠𝑢𝑝𝑒𝑟 = 𝑠𝑙𝑟𝑒𝑐
′ · 𝑠𝑙

𝑖𝑛𝑑

′ · ℎ𝑙𝑚𝑖𝑛𝑑 ,𝑚𝑟𝑒𝑐
+ 𝑠𝑙𝑟𝑒𝑐

′ · 𝑠𝑙
𝑖𝑛𝑑

· ℎ𝑙𝑚𝑖𝑛𝑑+1,𝑚𝑟𝑒𝑐
(20)

+ 𝑠𝑙𝑟𝑒𝑐 · 𝑠𝑙𝑖𝑛𝑑
′ · ℎ𝑙𝑚𝑖𝑛𝑑 ,𝑚𝑟𝑒𝑐+1 + 𝑠

𝑙
𝑟𝑒𝑐 · 𝑠𝑙𝑖𝑛𝑑 · ℎ𝑙𝑚𝑖𝑛𝑑+1,𝑚𝑟𝑒𝑐+1

This is like a single path method [17]. Although we need to
generate𝑀 ×𝑀 modules, only a constant number of modules need
to be extracted in each calculation, so there is no out-of-memory
problem. And we use the differential evolutionary algorithm[47] to
find the best candidate c.

According to [17], we divide the search process into two phases,
the warmup phase and the search phase. The pseudo-code for this
process is shown in appendix in section A.2. Similar to the usual
evolutionary algorithms, the differential evolutionary algorithm
optimizes the candidates by crossover and mutation. The additional
required arguments are listed in the inputs of the pseudo-code with
description. These arguments affect the size of the search space and
the search speed.

During the warmup phase, for all shared parameters to learn
information about the data, we randomly generate a candidate at
the beginning of each epoch. At the end of the search process, we
obtain the best candidate c and thus we can get the optimal auxiliary

weights according to Eqs. (14) to (17). After that, we retrain or fine-
tune the model and evaluate the performance of the model.

Till now, we complete the disentangled Transformer for recom-
mendation, which makes the representation output by the multi-
head attention disentangled with two auxiliary objectives. Addi-
tionally, to fit the layer-specific disentanglement characteristics
of the Transformer, we propose the adaptive training strategy to
automatically find the optimal auxiliary weights for each layer.
Our proposed method can be applied to various recommendation
models that are based on Transformer and generally improve the
performance of the backbone model.

4 EXPERIMENTS
In this section, we empirically evaluate the performance of the
proposed Adaptive Disentangled Transformer and analyze how it
works. Next, we will describe the backbone models, the evaluation
metrics, and the datasets we adopt.

Backbones. To better illustrate the adaptability of our method
to different situations, we adopt three different Transformer-based
sequential recommendation backbones and evaluate how much im-
provement these models can achieve through the proposed adaptive
disentanglement.

• SASRec[28]:This backbonemakes full use of the self-attention
mechanism and is one of the pioneers in the use of Trans-
formers for sequential recommendation tasks.

• Bert4Rec[48]: This backbone adopts the Cloze objective
to the sequential recommendation and predicts the masked
item by jointly using the left and the right context.

• STOSA[14]: This backbone treats the embedding of items
as a stochastic Gaussian distribution to fully find the simi-
larity between different items. And they proposed a module
using the Wasserstein distance to measure the relationship
between items.

The Evaluation Protocols. To evaluate the effectiveness of
the method, we chose Hit Ratio (HR), and Normalized Discounted
Cumulative Gain (NDCG) as the evaluation metrics, the same as the
original papers of the aforementioned backbones. For a fair compar-
ison, we keep the other evaluation details the same as the original
paper. However, in the original paper of SASRec and Bert4Rec, they
use popularity sampling to sample 100 negative items to calculate
these metrics, which will be easily biased as later works indicate[42].
Therefore, on these two backbones, we add the Area Under Curve
(AUC) metric which is consistent with different sampling meth-
ods. And for STOSA backbone, we add the Mean Reciprocal Rank
(MRR) as an evaluation metric to more comprehensively show the
superiority of our proposed method.

Datasets.We compare themethods on publicly available datasets
from real-world applications.

• Amazon1: The Amazon Dataset records user reviews of
Amazon.com products and is a classic dataset for recommen-
dation systems. In our experiments, we adopt the “Beauty ”,
“Home and Kitchen”, “Tools and Home Improvement”, “Toys
and Games” and “Office” sub-datasets.

1http://jmcauley.ucsd.edu/data/amazon/
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Table 1: The Overall Performance Comparison Table with SASRec and Bert4Rec backbones. The best and second-best results
are bold and underlined. where the "-ADT" suffix means that our method is used.

Dataset Metric POP BPR-MF NCF FPMC GRU4Rec Caser SASRec Bert4Rec SASRec-ADT Bert4Rec-ADT
HR@5 0.0392 0.1209 0.1305 0.1387 0.1315 0.1625 0.1934 0.2343 0.2193 0.2523

Beauty NDCG@5 0.0230 0.0814 0.0855 0.0902 0.0812 0.1050 0.1436 0.1711 0.1598 0.1827
AUC 0.5201 0.5434 0.5467 0.5534 0.5867 0.6041 0.6634 0.6679 0.6809 0.6752
HR@5 0.0805 0.1177 0.1203 0.1517 0.2171 0.1766 0.2559 0.2282 0.2785 0.2458

Steam NDCG@5 0.0477 0.0744 0.0717 0.0945 0.1370 0.1131 0.1727 0.1509 0.1917 0.1619
AUC 0.5111 0.5311 0.5763 0.5835 0.6133 0.6808 0.7325 0.7204 0.7408 0.7321
HR@5 0.0715 0.2866 0.1932 0.4297 0.4673 0.5353 0.5435 0.5902 0.5725 0.6015

ML-1m NDCG@5 0.0416 0.1903 0.1146 0.2885 0.3196 0.3832 0.3980 0.4515 0.4233 0.4580
AUC 0.5251 0.7411 0.7349 0.7556 0.8311 0.8469 0.8725 0.8805 0.8801 0.8809
HR@5 0.0805 0.2128 0.1358 0.3601 0.4657 0.3804 0.5727 0.5439 0.5841 0.5599

ML-20M NDCG@5 0.0511 0.1332 0.0771 0.2239 0.3090 0.2538 0.4208 0.4018 0.4311 0.4150
AUC 0.5329 0.7213 0.7009 0.7211 0.7780 0.8393 0.8884 0.8863 0.9048 0.8916

Table 2: The Overall Performance Comparison Table with the STOSA backbone. The best and second-best results are bold and
underlined. where the "-ADT" suffix means that our method is used. And "OOM" means the out of memory error.

Dataset Metric LightGCN TransRec Caser SASRec Bert4Rec DSSRec ComiRec DT4SR ICLRec STOSA STOSA-ADT
HR@5 0.0095 0.0063 OOM 0.0127 0.0105 0.0123 0.0092 0.0129 0.0153 0.0133 0.0184

Home NDCG@5 0.0060 0.0040 OOM 0.0087 0.0067 0.0085 0.0058 0.0082 0.0101 0.0093 0.0136
MRR 0.0071 0.0052 OOM 0.0094 0.0092 0.0086 0.0079 0.0093 0.0102 0.0100 0.0140
HR@5 0.0300 0.0321 0.0309 0.0416 0.0396 0.0436 0.0351 0.0449 0.0500 0.0504 0.0533

Beauty NDCG@5 0.0174 0.0204 0.0214 0.0274 0.0257 0.0308 0.0219 0.0296 0.0326 0.0351 0.0379
MRR 0.0203 0.0236 0.0231 0.0291 0.0294 0.0314 0.0265 0.0323 0.0322 0.0360 0.0392
HR@5 0.0231 0.0210 0.0129 0.0284 0.0189 0.0283 0.0283 0.0289 0.0326 0.0312 0.0341

Tools NDCG@5 0.0152 0.0134 0.0091 0.0194 0.0123 0.0202 0.0204 0.0196 0.0218 0.0217 0.0241
MRR 0.0170 0.0152 0.0106 0.0207 0.0160 0.0211 0.0212 0.0206 0.0230 0.0226 0.0249
HR@5 0.0266 0.0222 0.0240 0.0551 0.0300 0.0565 0.0366 0.0550 0.0598 0.0577 0.0602

Toys NDCG@5 0.0173 0.0143 0.0210 0.0377 0.0206 0.0387 0.0233 0.0360 0.0414 0.0412 0.0434
MRR 0.0200 0.0166 0.0221 0.0385 0.0244 0.0392 0.0272 0.0387 0.0415 0.0415 0.0438
HR@5 0.0226 0.0343 0.0302 0.0656 0.0485 0.0599 0.0438 0.0630 0.0653 0.0677 0.0687

Office NDCG@5 0.0157 0.0219 0.0186 0.0428 0.0309 0.0395 0.0304 0.0421 0.0452 0.0461 0.0486
MRR 0.0181 0.0263 0.0268 0.0457 0.0408 0.0407 0.0376 0.0475 0.0495 0.0502 0.0521

• Steam2:This dataset contains a large number of user reviews
crawled from the Steam gaming platform.

• MovieLens3: This dataset is one of the most famous datasets
for recommendation systems. It contains multiple user re-
views for multiple movies. In our experiment, we choose
ML-1M and ML-20M which are widely used by most of the
recommendation system researches.

In the experiments, in order to be as consistent as possible with
the treatment of the original paper of the backbone Transformer,
we performed popularity sampling on the experimental data of
SASRec backbone and Bert4Rec backbone, while experiments on
STOSA backbone do not perform any sampling method.

For the popularity sampling method, we follow the previous
work and match each ground truth item in the test set with 100
negative items that do not interact with the user. We use the pop-
ularity of the item as the sampling weight and randomly sample
these 100 negative samples. For the non-sampling method, we take
all items that have not interacted with the current user as negative
samples.
2https://cseweb.ucsd.edu/∼jmcauley/datasets.html#steam
3https://grouplens.org/datasets/movielens/

4.1 Main Results
We report the performances of different methods in Table 1 and
in Table 2. And we present the basic information of the baselines
used in A.1. Note that besides the aforementioned three backbones,
we also compare with some other baselines which the original
papers compare with, whose details are described in the appendix.
According to the results, we have some observations as follows.

The sequential model such as GRU4Rec and Caser is superior
to the non-sequential model such as BPR-MF and LightGCN. This
indicates that the non-sequential model only takes into account the
user behavior information and ignores the temporal information,
which does not make full use of the data. In the non-sequential
models, we find that LightGCN can achieve the most promising
results, which means that the introduction of graph data can cap-
ture the interaction behavior of the users. And Transformer-based
methods such as SASRec and Bert4Rec not only take advantage of
the temporal information but also capture the different intents of
the user behavior, thus providing better performances.

For all the backbones, our method is able to bring improvement
and outperforms all the other baselines. The relative improvement
of NDCG@5 and HR@5 metrics of our method ranges from 1.48%
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to 46.24%, which illustrates the superiority of our method. We be-
lieve that these improvements come from the following aspects: 1.
Compared with the non-Transformer model, thanks to the multi-
head attention mechanism, the Transformer is indeed able to ex-
tract different intentions of users to purchase different items and
thus improve the performance of the model. 2. Compared to the
transformer-based model, our method automatically selects the
weights of the auxiliary objectives using an adaptive approach that
takes full account of the factors including different models, different
datasets, and different optimization objectives.

For relatively small datasets such as Beauty and ML-1M in Ta-
ble 1, Bert4Rec outperforms SASRec in NDCG@5 and HR@5 met-
rics, but both have similar AUC metrics. On the other hand, for
larger datasets, Bert4Rec is not as good as SASRec. It means that
the recommendation capability of SASRec is not weaker or even
stronger than Bert4Rec, which is also shown in the results in Table 2.
This is most likely due to the introduction of the Cloze objective
task in Bert4Rec, which leads to inconsistency in model training
and testing and thus affects the performance. Nevertheless, our
method can consistently bring performance improvement for both
of the two backbones. This shows that our method can be applied
to different architectures, while the proposed auxiliary objectives
can improve the generalization ability of the model, thus alleviating
this inconsistency.

We note that the improvement brought by ourmethod is different
on different datasets. Taking the experimental results of the STOSA
backbone as an example, for the MRR evaluation metric, the relative
improvement of our method is 40% on the Home dataset. However,
on the Office dataset, it is 3.78%. We believe this is because the
Home dataset is sparser and it is more difficult for the recommenda-
tion system to capture the commonality of behaviors among users.
But our method enables the learned representations to extract this
information through auxiliary objectives that allow a deeper under-
standing of the sequence data. Similar phenomena can be found in
our experiments on the SASRec backbone and Bert4Rec backbone.
In particular, for Bert4Rec, there is almost no improvement on the
ML-1M dataset. This indicates that on a simple dataset like ML-
1M, the improvement on the multi-head self-attention mechanism
can no longer continue to dig deeper into the information of user
behaviors. And to get further improvement, it may be necessary
to introduce additional user behavior by other methods, such as
explicitly introducing graph data, etc.

4.2 Ablation Studies
We further conduct ablation studies to demonstrate the effectiveness
of different components as follows.

• We illustrate that the improvement brought by our proposed
ADT framework is not due to the increase in the number of
parameters.

• We show the necessity of adaptively finding the optimal
degree of disentanglement through exploring the effect of
the proposed auxiliary objectives.

Number of model parameters. Since our method adds a de-
coder, the parameters of the backbone model are increased. To show
that the improvement brought by our method is not due to the in-
crease of the parameters, we double the layers of the backbone

model to eliminate the effect of the number of parameters. And the
results can be found in Table 3.

Table 3: Performance Comparison Table with Double Layers.
The "-Double" suffix means that we double the number of
layers of that backbone model.

Dataset Metric SASRec SASRec-Double SASRec-ADT
HR@5 0.1934 0.1791 0.2193

Beauty NDCG@5 0.1436 0.1306 0.1598
AUC 0.6634 0.6071 0.6809
HR@5 0.5435 0.5347 0.5725

ML-1M NDCG@5 0.3980 0.3785 0.4233
AUC 0.8725 0.8608 0.8801

Dataset Metric Bert4Rec Bert4Rec-Double Bert4Rec-ADT
HR@5 0.2343 0.2199 0.2523

Beauty NDCG@5 0.1711 0.1586 0.1827
AUC 0.6679 0.6382 0.6752
HR@5 0.5902 0.5940 0.6015

ML-1M NDCG@5 0.4515 0.4567 0.4580
AUC 0.8805 0.8775 0.8809

Dataset Metric STOSA STOSA-Double STOSA-ADT
HR@5 0.0133 0.0168 0.0184

Home NDCG@5 0.0093 0.0121 0.0136
MRR 0.0100 0.0124 0.0140
HR@5 0.0504 0.0511 0.0533

Beauty NDCG@5 0.0351 0.0355 0.0379
MRR 0.0360 0.0368 0.0392
HR@5 0.0312 0.0331 0.0341

Tools NDCG@5 0.0217 0.0230 0.0241
MRR 0.0226 0.0238 0.0249
HR@5 0.0577 0.2658 0.0602

Toys NDCG@5 0.0412 0.0174 0.0434
MRR 0.0415 0.0192 0.0438

From the results, we observe that for most of the datasets, the
performance of the model decreases after doubling the number of
layers of the backbone model. For the results of the STOSA back-
bone, we note that the model fails to achieve a good performance
after doubling the number of layers on the Toys dataset. One plausi-
ble reason is that the Toys dataset is a relatively simple dataset and
numerous parameters lead to overfitting on this dataset. But for the
Home dataset, the performance is improved because this dataset
is more complex. Our method can handle both situations and get
better results, by considering the relationship between different
models and different datasets adaptively.

Auxiliary Objectives. We conduct experiments on Beauty, ML-
1M, and Office datasets to illustrate the effect of our auxiliary ob-
jectives. We fixed the structure of the model that obtained optimal
results in the previous experiments, i.e., the number of layers, the
number of heads, hidden size, etc. For each layer of the model,
we give only one of the auxiliary objectives a weight and set the
weights of all auxiliary objectives in the other layers to 0. The
results are shown in Figure 2.

We find that for different datasets, different model architectures,
and different layers, the performance of the model changes with
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Figure 2: Effect of auxiliary objectives on different layers of the model

these two auxiliary weights. And this change is beneficial in most
cases when the values of these auxiliary weights are in a suitable
range. Besides, the value where the best performance appears varies
from different models and different datasets. This means that these
two auxiliary objectives we propose really make sense and that
how to adaptively find the optimal weights for different layers is
significant for the backbone Transformermodel to get more positive
information. And we also note that for the independence constraint
auxiliary objective, the best model performance always occurs at
the shallow layer, and overall, it is better to apply the objective to the
shallow layer than to the deep layer. This is consistent with previous
works [10, 35, 45] where shallow layers need more disentangled
representations. And for the reconstruction auxiliary objective, the
best model performance always occurs at the deep layer except
in Figure 2(j), where the reconstruction can be regarded as an
auxiliary task to improve the generalization ability of the whole
model instead of only the shallow part.

To conclude, the experiments verify that our ADT framework is
able to encourage the disentanglement of attention heads to capture
various aspects of user interests, and adaptively discover the optimal
degree of disentanglement for attention heads in different layers to
achieve the best recommendation performance.

5 CONCLUSION
In this paper, we propose a novel Adaptive Disentangled Trans-
former (ADT) framework for the sequential recommendation, which
is able to disentangle representations learned by different heads
within different layers as well as adaptively determine the optimal
degree of disentanglement for recommendation simultaneously.
Extensive experiments show that our proposed framework can sig-
nificantly improve the performance of various transformer-based
recommendation models. We believe that it deserves further in-
vestigations to explore the adaptive disentangled Transformer in a
more general setting, i.e., it will definitely be interesting to design
an adaptive Transformer capable of handling more tasks including
machine translation, image classification, object detection, etc.
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A SUPPLEMENTARY MATERIAL
A.1 Comparison Methods
In this section, we give a brief description of the baselines for
reference.

• POP is a simple method which ranks items according to
their popularity.

• BPR-MF [43] learns personalized rankings from implicit
feedback and uses matrix factorization as recommender.

• NCF [21] uses neural architecture instead of the inner prod-
uct to model interactions between users and items.

• FPMC [44] combinesmatrix factorization andMarkov chains
to capture user preferences.

• GRU4Rec [23] uses Gated Recurrent Units to model the
sequence information of user’s behaviors.

• Caser [49] models high order Markov chains by introducing
convolution operations.

• LightGCN [20] simplifies the architecture of GCN to better
handle the recommendation tasks.

• TransRec [18] embeds items into the latent transition space.
• DSSRec [34] combines disentangled representation learn-
ing and self-supervised learning to balance the weights of
multiple interests.

• ComiRec [5] introduces attention mechanism and user in-
terests to make recommendations.

• DT4SR [13] uses distributions to represent items and se-
quences and develops two Transformers for modeling mean
and covariance embeddings.

• ICLRec [8] uses contrastive learning to model different pur-
chase interests.

A.2 Searching Algorithm

Algorithm 1 Searching Process of ADT
Input: The differential weight F, the crossover probability P𝑐 , the mutation

probability P𝑚 , the number of population 𝑛𝑝 , the number of crossover
per iteration 𝑛𝑐 , the number of mutation per iteration 𝑛𝑚 , and the
sequential dataset D

Output: The best candidate 𝑐 on the given dataset.
1: Warmup the supernet according to the forward form of Eqs. (18) to (20).

2: Randomly initialize the population C = {c1 .c2, ..., c𝑛 } where each c𝑖
is a d-dimensional vector representing a candidate sub-networks and
initialize the set G = C representing the optimal n candidates.

3: while Not reach the maximum number of search steps and not exceed
the time threshold do

4: clear C
5: for i = 1 to 𝑛𝑚 do
6: Randomly choose 3 candidates c𝑟 , c𝑝 , c𝑞 from G
7: v𝑖 = c𝑟 + F(c𝑝 − c𝑞 )
8: for j = 1 to d do
9: Generate a random number 𝑃
10: if 𝑃 ≤ P𝑚 then
11: u𝑖,𝑗 = v𝑖,𝑗
12: end if
13: end for
14: Appending u𝑖 into C
15: end for
16: for i = 1 to 𝑛𝑐 do
17: Randomly choose 2 candidates c𝑝 , c𝑞 from G
18: for j = 1 to d do
19: Generate a random number 𝑃
20: if 𝑃 ≤ P𝑐 then
21: u𝑖,𝑗 = c𝑝,𝑗
22: else
23: u𝑖,𝑗 = c𝑞,𝑗
24: end if
25: end for
26: Appending u𝑖 into C
27: end for
28: Randomly generate candidate vectors until |C | ≥ 𝑛𝑝

29: Evaluate the performance on the validation set ofD of each candidate
in the recommendation task and update G based on the metric.

30: end while
31: return The candidate c with the best performance that have appeared

in the search history.
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A.3 Latent Space Analysis
We visualize the representations learned by different heads of SAS-
Rec and SASRec-ADT. We can find that the original backbone fails
to disentangle the representations of different heads as expected
but our method disentangles the different parts and forms distinct
clusters which represent different aspects of user behaviors.
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(a) t-SNE of the representation of different heads learned
by SASRec
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(b) TSNE of the representation of different heads learned
by SASRec-ADT

Figure 3: t-SNE of the representations on ML-1M dataset

A.4 Implementation Details
For SASRec backbone and Bert4Rec backbone, we trained the model
on a device with 8 NVIDIA GeForce GTX TITAN X. And for STOSA
backbone, we trained the model on a device with 2 NVIDIA GeForce
RTX 3090.

In the search process, for all backbones, we use the Adam opti-
mizer with learning rate of 1𝑒 − 3, 𝛽1 = 0.9, 𝛽2 = 0.98, 𝓁2 weight
decay of 1𝑒 − 4. And the gradient is clipped when its norm exceeds
5. We set the number of population to 50, the number of candidates
obtained from both crossover and mutation in each iteration to
20, the differential weight F to 0.5 , and the probability of both
crossover and mutation to 0.1. During the retraining process, we
choose different hyperparameters depending on the backbone.

• SASRec: We set the layer number 𝐿 = 2, and consider
the head number ℎ from {1, 2, 4}, the hidden size 𝑑 from

{64, 128, 256}, the learning rate from {0.0001, 0.001}, the 𝓁2
weight decay from {1𝑒 −5, 1𝑒 −4, 1𝑒 −3}. We train the model
using Adam and a batch size of 256. We use the same max-
imum sequence length in [28], |𝑆𝑢 | = 200 for MovieLens
datasets and |𝑆𝑢 | = 50 for others.

• Bert4Rec: We set the layer number 𝐿 = 2, the head number
from ℎ = {1, 2, 4} and use the same maximum sequence
length as in SASRec backbone. We follow the original paper
of Bert4Rec [48] and set the hidden size of each head to
32. For the mask proportion 𝜌 , we set 𝜌 = 0.6 for Beauty,
𝜌 = 0.4 for Steam, and 𝜌 = 0.2 for MovieLens datasets as
recommended.We train the model using Adamwith learning
rate of 1𝑒 − 4 for Steam and ML-20M, 1𝑒 − 3 for Beauty and
ML-1M and 𝓁2 weight decay from {0, 1𝑒 − 4, 1𝑒 − 3} for all
of them.

• STOSA:We grid search the hyperparameter similar to the
original paper of STOSA [14]. We consider the hidden size 𝑑
from {32, 64}, the number of layers from {1, 2, 3}, the number
of heads from {1, 2, 4}, the learning rate from {1𝑒 − 3, 1𝑒 − 4},
the 𝓁2 weight decay from {0, 1𝑒 − 4, 1𝑒 − 3} and the dropout
rate from {0.0, 0.1, 0.3, 0.5, 0.7}. For the maximum sequence
length, we set it to 100 for all datasets.

A.5 Statistics of Datasets
The details of datasets statistics used in SASRec and Bert4Rec are
presented in Table 4 and the statistics used in STOSA are presented
in Table 54.

Table 4: Datasets Statistics for SASRec andBert4Rec backbone

avg.
Dataset #user #items #interactions density interactions

per user
Beauty 40226 54542 353962 0.02% 8.7993
Steam 334730 13047 3686172 0.08% 11.0124
ML-1M 6040 3416 999611 4.84% 165.4985
ML-20M 138493 26744 20000263 0.54% 144.4135

Table 5: Datasets Statistics for STOSA backbone

avg.
Dataset #user #items #interactions density interactions

per user
Home 66519 28238 551582 0.03% 8.2936
Beauty 22363 12102 198502 0.07% 8.8764
Toys 19412 11925 167597 0.07% 8.6337
Tools 16638 10218 134476 0.08% 8.0825
Office 4905 2421 53258 0.45% 10.8579

4The statistics of Beauty dataset here is different from in Table 4 is because STOSA
backbone uses 5-core settings.
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